When the user performs a function on the device, haptic response can make this more obvious, confirm it happened and confirms the device perceived and is reacting to the action. For touch devices, the haptic response takes the place of physical response, and allows more natural and assured use of the interface.

Notifications can use vibrating output to help users locate the device, or to provide a (generally) more silent “ringtone” than audio output. Generally, vibrate is activated alongside tones. Be sure to alternate audio and vibrate, to avoid the two conflicting with each other.


Vibrating alerts and tactile feedback should be provided to help assure perception and emphasize the nature of UI mechanisms.


Haptics refers to receiving information by touch. Practically, with current generally-available technology, this refers to the use of vibration to communicate with the user. In much the same way that mobiles have evolved to contain a variety of sensors, they also have a broad range of output devices; most mobiles have some sort of vibration, or an external speaker, which can be used for at least basic Haptic Output.

These vibrations are generally propagated through the entire device, but can be localized, or placed only in specific components, such as the pen in a Pen Input device.

Most vibration is very coarse, and accomplished by a simple off-center weighted motor. Control is only by intensity and switching the motor on and off. Transducer-based vibration is also available, using tools typically employed for audio output to make more nuanced vibrations. This may simply involve the bone conduction transducer (BCT) included for use of hearing impaired users being re-purposed for general Haptic Output. Use of the BCT for audio output is not part of this pattern, and is otherwise beyond the scope of this book.

In addition, the device speaker can generate tones that vibrate more than they are emitted as audio, and thereby fall more into the Haptic Output range than that of Tones despite the output device being used.

Additional methods of haptic output are being developed in the laboratory, and may appear in production soon. These include the ability to sense objects that are not physically present, enabling tactile virtual keyboards for example.


For mobile devices, Haptic Output is currently used in two ways, both distinctly as dynamic output methods.

As discussed above, haptics may soon also be used for other types of tactile output. Especially useful will be the ability to detect shape and texture -- to allow feeling virtual, on-screen elements. This will form a third variation, of output perceived by the user to be passive, and representing static, physical spaces and objects.

Interaction Details

Haptic Output is used to emphasize that an action happened or communicate in other channels when users may not notice audio or visual cues. They must never stand alone, and must be used to reinforce actions by the user, reactions on screen or displays on screen, by LED or by audio.

Phenomena like the McGurk effect -- where speech comprehension is related to the visual component -- appear to exist for other types of perception. Vibration should support interaction with the visual portions of the interface, by being related to the physical area interacted with whenever possible, and by having a corresponding visual or physical component.

If an alert is expressed as Haptic Output, it should always have a clear, actionable on-screen element. These should always appear in the expected manner for the type of event, as described in the Notifications pattern.

Haptics resulting from keypresses or other actions the user takes should may be the only response aside from the intended action (e.g. typing the character). It may also support Wait Indicators or replace them for very short timeframes, when indicating that the input has been received and understood by the device.

Haptic Output for Notifications (to include ring tones) is generally considered to be contiguous with the volume control system. Vibrate is either the setting between off and the lowest level, or can be enabled as a switch so it is on (or off) at all volume levels. While being used, vibration will be silenced in the same manner and at the same moment as Tones or Voice Notifications are. The same mute, cancel or silence functions will be presented when only vibration is enabled, and there is no audio output.

Presentation Details

When used as response items, haptic vibration should not be used generically but should carry meaning in much the same way audio does. Clicks should feel like clicks, errors should be harsh as though being rejected, and so on.

When emulating real objects, the tactile characteristics of those objects can be measured, and codified for the simulation. Tricks of audio playback sometimes work for vibration; this is in fact why vibration can be used to simulate tactile perception at all. However, touch is different from audio, so different guidelines must be used and specialists in the design of vibration should be employed.

For devices without haptic or vibration hardware, audio can serve this need in a limited manner. Short, sharp tones provided through the device speaker can provide a tactile response greater that their audio response.

Very low bass tones can provide some of the best response, and most speakers can actually generate tones below the threshold of human hearing. However, devices are generally not designed in this manner, so these tones can generate distractingly improper resonance in the case, ruining the effect. Test on targeted devices before use.

Also use care generating tones at the edge of human hearing with the intent of using them purely as haptics. Younger populations, and certain individuals, have wider ranges of hearing and may be able to detect it audibly. This may be an acceptable side effect, but assure it is not distracting or interferes with the use of audio in other frequencies for those users.

Do not play multiple vibrations at one time. Even if the device supports this, they cannot generally be perceived accurately by the user, and may end up as noise, even if in multiple localized areas.

Vibration and sound are closely coupled behaviors and can influence each other in undesirable ways. When both are needed, they generally must be alternating to avoid conflicting with or modifying each other. Vibration devices can cause unintended buzzing or other distorting resonance in audio devices. Alerts, for example, generally vibrate briefly, then sound a brief Tone, and repeat this until the notification alert time expires or the user cancels or mutes the output.


Do not over-use haptic output without a good understanding of all effects of the device hardware. Besides the audio conflicts described above, if traditional motor-driven vibration is used, it may consume the battery excessively quickly.

Make sure haptic alerts send vibrations repeatedly. Phantom ringer behaviors are known to exist for vibration as well as audio; single vibrations may be written off as an accident of perception by the user, and the alert will be missed.

When employing an audio output device for haptic vibration (either the device speaker or the BCT), audio has priority, especially when used for playback of media or for ongoing communications. Never interrupt the voice channel of a call to play a haptic alert.

Haptic output can easily induce "Alarm fatigue" in the same manner as for alert Tones. If the alert method is too generic, too common or too similar to other tones in the environment (whether similar to natural sounds or electronic tones from other devices) they can be discounted by the user. Use as few different sounds as possible, but avoid using simple "vibrate" for every alert. Note that disregarding alerts is not always a deliberate conscious action; the tone or vibration is eventually considered noise by their brain, such that it will not longer be noticed.